Connect with us

Técnica

Alerones mariposa: cómo se rompió el alerón de Vettel

La vibración de los neumáticos de unos 35 Hz provocaron el desprendimiento del alerón delantero de Vettel por fractura del soporte por fatiga.

Published

on

Todos pudimos presenciar el desprendimiento del alerón delantero en el monoplaza de Sebastian Vettel. Era la vuelta 39. Sebastian cometía un trompo tratando de adelantar a Lewis Hamilton, bloqueando los cuatro neumáticos. Esto provocaría un plano en cada uno de los cuatro neumáticos.

Como sabréis, a consecuencia de esos planos y las vibraciones que provocaba, se rompió el alerón delantero. A continuación explicamos cómo un plano de unos pocos milímetros pudo causar la rotura de todo un alerón. Además, simulamos las circunstancias en las que esta se dio. Aunque con parámetros aproximados, el fenómeno se puede reproducir con un ordenador.

La suspensión filtra las vibraciones

Las vibraciones de la carretera son ondas. La rueda impacta con ellas. Estas ondas tienen una frecuencia, que simplemente es el número de veces que se repiten en un segundo. Una vibración de 10 Hz se repite 10 veces en un segundo. La suspensión puede verse como «una caja negra» que transmite una vibración al resto del vehículo. Esta caja negra recibe una entrada, que es la vibración de la carretera, y tiene una respuesta, que es la vibración que se transmite al vehículo.

MomentoGP

La  vibración que se transmite al vehículo es de la misma frecuencia que la de entrada. Si un coche pasa por un tramo bacheado con cierta velocidad, de forma que, hay 5 baches cada segundo, la frecuencia que percibe un pasajero en el coche es de 5 Hz. Sin embargo, la intensidad de la vibración es menor, debido a que la suspensión hace su trabajo y lo filtra… casi siempre.

El filtro de la suspensión no es igual para cada frecuencia. A bajas frecuencias, la suspensión es muy poco efectiva, mientras que a altas frecuencias es tan efectiva que prácticamente no se transmite ninguna vibración. Esto es así porque no tiene la misma importancia un movimiento que se repite pocas veces que otro que se repite muchas veces en el mismo tiempo. El objetivo es filtrar las altas frecuencias, en coches de calle por comodidad y comfort, en Fórmula 1 por estabilidad y manejabilidad.

El siguiente gráfico es el diagrama de Bode de una suspensión. Representa, para cada frecuencia, cómo de intensa es la vibración que transmite. Cuando a una frecuencia le corresponden 0dB, la vibración transmitida es exactamente igual a la de la carretera. Cuando está por debajo, se transmite muy atenuada. Como se puede ver, hay unas frecuencias donde se transmite una vibración mayor. Estas son las frecuencias que están cerca de la frecuencia de resonancia. En un Fórmula 1 suele ser de 7 Hz, una frecuencia que es demasiado baja en el rango de trabajo del monoplaza.

MomentoGP-Software MATLAB

La vibración que transmitía el neumático de Vettel

En el momento exacto en el que se rompió el alerón de Vettel, este rodaba a 260 km/h. Suponiendo que las vibraciones estaban en fase, y teniendo en cuenta que el diámetro exterior de los neumáticos en Fórmula 1 es aproximadamente de 650mm (es el valor máximo), podemos calcular la frecuencia de vibración exacta a la que se rompió el alerón: 35 Hz.

APP Fórmula 1. Se puede ver que la velocidad exacta de Vettel en el incidente es de 260 Km/h

Una vez conocida la frecuencia de vibración que recibe el neumático, podemos simular cuál es la vibración que se transmitía al monoplaza, una vez pasado el filtro de la suspensión. Para modelar la suspensión, hemos introducido los siguientes valores:

Masa del vehículo=700 kg (175 kg en cada rueda)

Carga aerodinámica=10.000 N

Constante de rigidez de la suspensión=90000 N/m

Constante de amortiguación=7200 Ns/m

Todas las constantes son valores razonables en la situación en la que se produjo el incidente de Vettel. Aunque no diste mucho de la realidad, no son valores exactos. Sin embargo, el fenómeno que queremos explicar se ve perfectamente.

Simulamos la respuesta de la suspensión ante una vibración rectangular de 35 Hz y la respuesta es la siguiente.

MomentoGP-software MATLAB

En azul vemos la vibración producida por la rueda con el plano. En amarillo vemos lo que percibe el monoplaza tras filtrar la vibración la suspensión. Vemos que esta vibración a penas se transmite. Sin embargo, algo pasaba. ¿Por qué Vettel prácticamente no podía hablar de la vibración que sufría? ¿Por qué se rompió el alerón?

La respuesta es la vibración en la fibra de carbono.

Resonancia del alerón

El alerón se puede modelar como un muelle con una masa en su extremo. Cuando en su soporte central se ejerce un movimiento, en sus extremos se produce una reacción contraria que provoca una oscilación. Al igual que con la suspensión. también podemos ver un diagrama de Bode con el comportamiento del alerón para cada frecuencia. (Hemos despreciado la fricción con el aire, que a efectos prácticos no influye).

Como vemos, aquí se transmite la vibración a bajas frecuencias completamente igual. Sin embargo, a una cierta frecuencia, la de resonancia, la amplitud de la vibración aumenta enormemente. Hemos simulado este fenómeno en el caso de que coincide la frecuencia de resonancia con los 35 Hz, como se evidencia en las imágenes. La onda de entrada, ahora de color azul, es la onda que transmite la suspensión (amarilla en el diagrama anterior). La onda amarilla es la onda con la que vibra el alerón. 

MomentoGP-software MATLAB

Como podemos ver, en poco tiempo la vibración se puede volver catastrófica, a pesar de que la excitación del alerón sea muy poca. De hecho, a partir del tercer segundo, parece prácticamente constante. Sin embargo no lo es: hay pequeñas oscilaciones muy pequeñas. Esto hace que el alerón amplifique su oscilación cada vez más.

El alerón no se rompió en sí mismo, sino que se rompió el soporte. Cambios tan grandes en la amplitud requieren un esfuerzo enorme en el soporte que lo sujeta. Llega un momento en el que esta fuerza supera el límite de fluencia de la fibra de carbono de esa zona, y se produce una rotura frágil, con resultado catastrófico como pudimos comprobar. No será la última vez que veremos algo similar. Siempre se podrá explicar de forma similar a lo sucedido esta vez. Hasta entonces, seguiremos viendo alerones mariposa.

 

Simulación realizada con Matlab-Simulink, con licencia de estudiante del Politécnico di Milano, sin ánimo de lucro.

 

Continue Reading
Click to comment

Leave a Reply

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Técnica

Bloqueo sónico en motores de competición: un problema real que pasa desapercibido

Motores super-cuadrados como solución al bloqueo sónico

Published

on

En este artículo vamos a explicar uno de los problemas menos conocidos que sufren los motores de competición que puede llevar a una caída brusca del rendimiento del mismo o incluso su rotura: el bloqueo sónico.

Antes de explicar dicho problema, es necesario aclarar conceptos básicos sobre los Motores de Combustión Forzada o MEF, es decir, los motores de gasolina convencionales.

Si analizamos el ciclo que se lleva a cabo para producir energía, se obtiene un gráfico similar al mostrado en la figura inferior (de manera muy simplificada).

Ciclo básico de un motor de combustión. Gráfica Presión-Volumen

En él podemos distinguir 4 fases principales:

  • Admisión
  • Compresión
  • Expansión
  • Escape

No obstante, siendo puristas se deben distinguir las siguientes fases:

  • Admisión con Retraso al Cierre de la Admisión (RCA) para maximizar la entrada de aire. Adiabática (sin pérdida de calor) y a presión constante.
  • Compresión.
  • Combustión a volumen constante.
  • Combustión a presión constante.
  • Expansión.
  • Escape espontáneo adiabático (sin pérdida de calor).
  • Escape forzado diabático (con pérdida de calor) a presión constante.
  • Cierre de la válvula de escape y apertura de la admisión.

Una vez distinguidas las fases que forman un ciclo de un motor convencional, ya podemos comenzar a explicar el problema del bloqueo sónico. Este fenómeno tiene lugar en la fase de admisión y es característico de los motores de competición por su alta velocidad de giro.

Los cilindros de los motores se pueden clasificar según su relación entre la carrera (distancia que recorre el émbolo desde el Punto Muerto Superior hasta el Punto Muerto Inferior), y el diámetro del propio cilindro. Así, la clasificación queda de la siguiente manera:

  • De carrera larga (lentos): la carrera es superior al diámetro del cilindro, l > D.
  • Cuadrados (normales): la carrera es igual al diámetro del cilindro, l = D.
  • Super-cuadrados (rápidos): la carrera es inferior al diámetro del cilindro, l < D.

Esquema básico de un cilindro

Cada uno de estos tipos de cilindros se asocia a una velocidad media del émbolo determinada, u, que depende de la velocidad de giro en rpm (n) y de la carrera (l), de la siguiente forma:

u = 2·n·l

Así, los motores rápidos de competición tienen velocidades medias superiores a 15 m/s, los motores normales de los vehículos de calle tienen velocidades de entre 10 y 15 m/s y los motores lentos empleados en barcos tienen velocidades inferiores a 10 m/s.

Dado que la potencia resulta proporcional a la velocidad de giro, n, los motores deportivos y de competición suelen ser super-cuadrados, con el objetivo de lograr mayores velocidades de giro, n, manteniendo la velocidad media del émbolo, u. El motivo es que el motor deja de llenar bien a partir de una determinada velocidad del émbolo, u, por bloqueo sónico de la válvula de admisión. Para una velocidad media del émbolo de 20 m/s, se alcanzan velocidades próximas a las del sonido (350 m/s) en el flujo alrededor de las válvulas de admisión debido a las perturbaciones en las presiones en el interior del cilindro. En este instante decimos que el caudal de aire que entra a través de las válvulas se encuentra bloqueado sónicamente y, por tanto, el flujo no puede entrar en el interior del cilindro y el rendimiento de la combustión cae de forma brusca.

Para solucionar este problema crítico, se aumenta el número de válvulas de admisión, su diámetro y se opta por motores super-cuadrados. Además, se produce un Adelanto a la Apertura de la Admisión (AAA) y un Retraso al Cierre de la Admisión (RCA). Todo ello permite que los motores de competición alcancen valores de velocidad de giro superiores a las 13.000 rpm sin que ello suponga un problema en la admisión.

Especificaciones técnicas de la unidad de potencia del Ferrari SF90

Continue Reading

Técnica

Análisis de los Entrenamientos Libres | McLaren al ataque

Finalmente Ferrari fue el más rápido a una vuelta pero Bottas fue quien más giros dio

Published

on

Tras las dos primeras sesiones de entrenamientos libres nos disponemos a analizar lo que nos han podido contar los tiempos. ¿Está McLaren tan fuerte como parece?

(más…)

Continue Reading

Técnica

Mercedes y Red Bull evolucionan, pero, ¿y Ferrari?

Mientras que Mercedes y Red Bull presentan importantes actualizaciones en cada Gran Premio, la Scuderia Ferrari parece no estar trabajando lo suficiente sobre el SF90.

Published

on

Tanto Mercedes como Red Bull se han mostrado muy activos en términos de desarrollo durante la primera etapa de la temporada. Sea desde el punto de vista del motor (el de Honda ha mejorado considerablemente) como desde el enfoque aerodinámico.

Mercedes ha realizado importantes mejoras aerodinámicas que han permitido al W10 hacer un progreso constante. Durante las últimas semanas hemos podido ver el intenso trabajo del equipo en el área lateral del cockpit, con modificaciones para mejorar el flujo de aire alrededor del monoplaza, entre el eje delantero y las entradas de aire a los radiadores. Todo ello también ha permitido un aumento en la carga aerodinámica que actúa sobre el eje trasero.

En la imagen inferior se pueden ver los cambios que Mercedes ha traído desde el GP de España, con modificaciones en los bargeboards, a los que fue agregado un nuevo elemento, y en los perfiles horizontales,  ahora en forma de  ‘doble colmillo’. Finalmente, también se actualizó el soporte de los espejos anteriores, convirtiéndose también en un elemento aerodinámico.

Antonio Granato

El desarrollo en el W10 también involucró las suspensiones delanteras, con un sistema que modifica la altura del eje delantero (y por tanto, del ala), aumentando la carga aerodinámica en ocasiones puntuales, con un balance ajustado para mejorar la eficacia del monoplaza en el paso por curva.

Algo similar ha sido realizado por parte de Red Bull en el último Gran Premio de Mónaco, donde Adrian Newey ha revisado el funcionamiento del suelo de su RB15. De este modo, se han añadido tres pequeños elementos en el exterior del suelo, lo que debería ayudar a direccionar el flujo de aire alrededor del monoplaza, ayudando a la función de ‘sellado’ del fondo plano en el área trasera. El RB15, al igual que todos los monoplazas que usan un ángulo de rake muy acentuado, debe hacer que el sistema que fija el difusor trasero sea cada vez más efectivo. Esto se consigue evitando que los flujos externos entren por debajo del monoplaza, para lograr así una zona de baja presión en esa área.

Antonio Granato

Por otro lado, el SF90 parece estar ‘estacionario’ desde el punto de vista del desarrollo aerodinámico. Algunas intervenciones en detalles que solo cambian parcialmente determinados elementos aerodinámicos, con efectos mínimos en el rendimiento global, como se ha podido ver en pista, al tratarse de detalles en zonas no muy importantes. De hecho, las modificaciones en los cortes de la pared lateral vertical del alerón trasero, así como la inserción de un corte en la parte alta del capó son las únicas medidas destacables. Sin embargo, solo han hecho mejorar ligeramente, como ya se esperaba, la aerodinámica del monoplaza de Ferrari. 

Antonio Granato

 

Traducido por Manuel García

Continue Reading

Twitter

MomentoGP's Twitter avatar
MomentoGP
@MomentoGP

No podía faltar la cabezada durante Safety Car #WEC #LeMans24 #SuperFinale

Show Media
Tweet Media
MomentoGP's Twitter avatar
MomentoGP
@MomentoGP

🚨 SAFETY CAR 🚨 💢 Accidente de Marcel Fassler con el Corvette #64 que se ha ido contra el tras un toque con SATOSHI… t.co/0tiWysl8sH

MomentoGP's Twitter avatar
MomentoGP
@MomentoGP

#F1 | Ferrari no apelará la sanción a Sebastian Vettel (🗒 por @sergio_f1_1989) t.co/aEb061f7zz

Show Media
Tweet Media
MomentoGP's Twitter avatar
MomentoGP
@MomentoGP

👨‍🚀🇪🇸 Antonio García "Hay que mantener ahí arriba, los FCY alteran mucho menos la carrera y no te puedes permitir… t.co/IzIdvsETOU

MomentoGP's Twitter avatar
MomentoGP
@MomentoGP

Luego por la noche, seguro que será el más activo. 😴☀️▶️😬🌘 #LeMans24 #WEC #SuperFinale

Show Media
Tweet Media

Facebook

Meta

Populares

Copyright © 2017-2019 MomentoGP.
Este sitio web no es oficial y no está asociado en ningún modo con el grupo de compañías de la Fórmula 1. F1, FORMULA ONE, FORMULA 1, FIA FORMULA ONE WORLD CHAMPIONSHIP, GRAND PRIX y marcas relacionadas son marcas registradas de Formula One Licensing B.V.