Connect with us

Técnica

El arte de deslizar los neumáticos

El deslizamiento del neumático es necesario para acelerar y frenar, aunque en exceso es perjudicial para los tiempos por vuelta

Published

on

En todos los vehículos de competición vemos que los neumáticos no siempre giran a la misma velocidad que el desplazamiento del coche. Así lo vemos cuando un coche bloquea ruedas o cuando en tracción los neumáticos aceleran más rápido que el vehículo. Lejos de lo que podría parecer, los neumáticos deben deslizar para ir al límite de su adherencia. Por otro lado el deslizamiento en exceso hace perder tiempo. Hay una estrecha franja donde deslizar los neumáticos hacer ganar décimas, y eso vamos a tratar de explicar: cuál es el deslizamiento óptimo que tiene que llevar el neumático, cómo se mide, de qué depende y como los pilotos inconscientemente conducen en el punto óptimo.

¿Cómo se mide el deslizamiento?

El deslizamiento del neumático se mide con una diferencia entre la velocidad que lleva el neumático y la velocidad que lleva el propio vehículo. Si la velocidad lineal del punto de contacto del neumático en rotación es la misma que la velocidad del coche, no existe deslizamiento. Si uno de los valores es mayor que el otro existe deslizamiento del neumático. Principalmente esto ocurre en aceleración y en frenada.

  • Deslizamiento en aceleración: el neumático tiene mayor velocidad que el coche. La siguiente fórmula se utiliza para medir el deslizamiento en este escenario.

  • Deslizamiento en frenada: el coche tiene más velocidad que el neumático, sobre el cuál está actuando el freno y tiene menor velocidad. El deslizamiento en este escenario se mide con una fórmula similar.

La curva Grip-Deslizamiento

Para cada neumático y cada superficie existe una curva que relaciona la adherencia o grip del neumático con respecto a su deslizamiento. Una forma de medir el grip es con la fuerza que transmite el contacto del neumático con el asfalto al resto del vehículo, que es la fuerza que acelera o frena el vehículo. Por supuesto, es conveniente que esta fuerza sea lo mayor posible.

En el siguiente gráfico vemos cómo se relacionan ambas variables cualitativamente. Cuando no hay deslizamiento de neumático no existe ninguna fuerza que acelere o frene el coche. Es decir, es estrictamente necesario que el neumático deslice sobre el asfalto. Además vemos que hay un punto a partir del cual si se aumenta el deslizamiento, la fuerza sobre el vehículo disminuye. Por ello, es inconveniente pasarse de deslizar el neumático.

iRacing blog

Los pilotos profesionales conducen habitualmente en la zona naranja. La práctica y el talento les permite tener el tacto con el acelerador y el freno que provoca estar siempre en el límite de adherencia de los neumáticos

Diferentes variables que afectan a la curva Grip-Deslizamiento

La curva de comportamiento del grip del neumático es algo muy difícil de medir y a veces incluso al propio fabricante le cuesta modelarla, en gran parte por la cantidad de variables de las que depende. A continuación explicamos cómo afectan algunas de ellas.

 

  • La superficie de contacto: El neumático tiene diferente comportamiento dependiendo de la superficie en la que se encuentra. La curva grip-deslizamiento cambia drásticamente si el asfalto está mojado, pero también entre diferentes tipos de asfalto o incluso en la suciedad que pueda existir en ella.

 

  • La carga sobre el neumático: La carga que actúa sobre el neumático provoca una deformación que hace variar el radio efectivo del neumático y la huella de contacto. Con ello se altera el valor óptimo del deslizamiento. Esto es sobre todo significante a altas velocidades porque la carga aerodinámica es bastante alta.

 

  • La temperatura y presión del neumático: La presión hace variar la huella de contacto del neumático, pero sobre todo las condiciones térmicas del neumático provocan que que varíe el grip del neumático. 

 

  • El desgaste: Conforme los compuestos se desgastan se reduce la capacidad del neumático de generar agarre, provocando que el punto máximo de la curva grip-deslizamiento se desplace hacia abajo.

 

  • Angulo de giro: Cuando los neumáticos están girando, están transmitiendo fuerzas laterales. Esto provoca que los neumáticos trabajen en dos direcciones (lateral y longitudinal), y en consecuencia, se reduce su rendimiento en la dirección longitudinal (dirección de frenado y aceleración).

Bloqueo de neumáticos y reparto de frenos

Una consecuencia directa de todo esto es que para mejorar el rendimiento es necesario aplicar el deslizamiento óptimo sobre los cuatro neumáticos. Cuando el coche frena, los neumáticos delanteros reciben mayor carga, por lo que tienen mayor tendencia a bloquear y deslizar. A causa de este deslizamiento excesivo, se provocaría una reducción del grip del neumático, y por lo tanto una frenada delantera poco efectiva, induciendo un subviraje. 

Formula1.com

Aquí es donde influye el reparto de frenada: es necesario buscar el reparto óptimo para que el deslizamiento de los neumáticos delanteros y traseros esté en el rango que mayor grip proporcionan. En vehículos híbridos puede ocurrir al revés y exista mayor tendencia a bloquear los neumáticos traseros, debido al gran par de frenado que ejerce la regeneración eléctrica, provocando que la parte trasera del coche se descontrole al frenar.

Continue Reading
Click to comment

Leave a Reply

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Técnica

Técnica | ¿Cómo se diseña la cámara de combustión de un Fórmula 1?

En una parte tan importante del monoplaza, son muchos los aspectos a considerar.

Published

on

Desde luego, es bien sabido que la Fórmula 1 ha sido durante mucho tiempo la cuna del desarrollo tecnológico en el ámbito automovilístico, en todos los aspectos del monoplaza: Aerodinámica, chasis, seguridad… Pero si hubiera que elegir el componente que más inversión en desarrollo ha requerido, este sería el motor de combustión, donde se produce la energía necesaria para impulsar el monoplaza. El núcleo de dicho motor está formado por 6 cilindros en V donde se aprovecha la energía química del combustible mediante su explosión para transformarla en energía mecánica: Movimiento de giro. ¿Cómo se diseña la cámara de combustión?

Esta cámara, como ya hemos dicho, tiene forma de cilindro, y en su interior aloja un pistón móvil que realiza un movimiento alternativo de subida/bajada. La cámara de combustión se caracteriza por dos parámetros geométricos: Bore y Stroke. El primero de ellos, el Bore, indica sencillamente el diámetro del cilindro, mientras que el Stroke especifica la longitud de la carrera del pistón, desde el punto muerto inferior, hasta el punto muerto superior. Cada vez que el pistón realiza una carrera de subida + bajada, el eje al que está unido (denominado cigüeñal, ‘crank’) realiza un giro completo de 360º.

Definición de BORE y STROKE. Fuente: howmechanismworks.com

Un Fórmula 1 cuenta con un cubicaje total de 1,6 litros, que corresponde con 0,27 litros por cilindro, aproximadamente (un volumen menor al de una lata de refresco estándar). En este momento, surge la pregunta: ¿Cuánto mide el Bore, y cuánto el Stroke? Para deducirlo debemos tener en cuenta varias cuestiones técnicas con respecto al rendimiento de un motor de combustión interna.

El principio básico de generación de potencia en este tipo de motor es que Potencia = Par x Velocidad de giro, y suponiendo una curva de par relativamente constante en el rango de revoluciones de uso, tenemos que la potencia es directamente proporcional a la velocidad de giro que puede tener el motor. Dispondremos de más potencia cuanto mayor sea la velocidad de giro, algo que equivale a tener una menor carrera del pistón (Stroke). Tenemos por tanto una de la condiciones para el diseño del cilindro, ¿pero hasta qué punto podemos reducir este parámetro geométrico?

Una de las limitaciones es la velocidad a la que puede llegar a moverse el pistón, cuyo valor máximo para un vehículo estándar ronda los 25 metros/segundo. Con esta restricción, y sabiendo que los Fórmula 1 en la actualidad giran a un máximo de 15.000rpm, extraemos un valor de Stroke de 5 centímetros, y con él, un valor de Bore de unos 8 centímetros (conociendo el volumen del cilindro de 0,27 litros). Nota: El reglamento actual establece en su Artículo 5.3.1 que la dimensión del Bore ha de ser de 80 +-1 mm.

Imagen del Ferrari SF1000 sin la cubierta motor. Fuente: motosportmagazine.com

Es importante considerar las consecuencias de tener un diámetro de cilindro de este tamaño. En primer lugar, hay que recordar que el intercambio de gases en la cámara de combustión se realiza a través de las válvulas de admisión, para la entrada de aire, y de escape, para la salida de los gases producto de la combustión. Contar con una mayor superficie de cabeza de cilindro, que es el lugar donde se encuentran situadas éstas (ver última imagen), permite instalar válvulas de más diámetro, aumentando con ello la cantidad de gases intercambiables en un mismo intervalo de tiempo, útil sobre todo cuando nos encontramos en un régimen alto de giro del motor.

Sin embargo, no todo son ventajas, en el proceso de transformación de energía en un motor existen pérdidas por muy diversas razones, y una de las más relevantes es la transferencia de calor a través de las paredes. Un mayor diámetro de Bore implica un incremento de esta superficie de transferencia, considerada cuando el pistón se encuentra en el punto más alto de su carrera, cuando se inicia la combustión. En conclusión, mayor Bore implica mayores pérdidas por transferencia de calor, por lo que es importante encontrar un equilibrio para maximizar la eficiencia del sistema. 

Además, y ya para finalizar, hay que considerar la dinámica de la combustión de la mezcla en el interior de la cámara. El encendido tiene lugar mediante bujía (‘Spark plug‘), posicionada normalmente en el centro de la cabeza del cilindro, donde comienza la propagación de la llama. Si tenemos un gran diámetro de Bore, la combustión será más lenta, ya que la llama ha de recorrer una mayor distancia hasta los laterales de la cámara, y por tanto, tardará más en qumar la mezcla. En este aspecto, también podemos destacar el concepto de turbulencia, que facilita la mezcla de aire con combustible, y con ello su combustión. Sin embargo, la existencia de este fenómeno no depende tanto del diseño del cilindro, sino de la forma de los colectores, principalmente en admisión.

Propagación de la llama en un motor de encendido provocado. Se puede observar como el frente de llama tardará más tiempo en alcanzar las paredes laterales del cilindro si este tiene un Bore grande. Fuente: General Chemistry: Principles, Patterns, and Applications, 2011

La complejidad en el diseño de partes del motor como esta es considerable, aunque actualmente su desarrollo esté bastante limitado por el reglamento. Como hemos podido observar, la eficacia del componente reside en encontrar el equilibrio adecuado entre todas las condiciones/restricciones existentes, algo que no es nada fácil en absoluto.

Continue Reading

Técnica

Motores de F1 ¿De qué están hechos?

Entramado de materiales de una unidad de pontencia en la F1 moderna

Published

on

Muchos al pensar en un coche de F1 y sus materiales se enfocan en la fibra de carbono y el kevlar de los cuales están construidos muchos de los componentes estructurales. Sin embargo, muy poco se habla de los materiales que componen una unidad de potencia de F1.

Unidad de potencia moderna – Renault Sport

Las actuales regulaciones técnicas de F1 limitan considerablemente la selección de materiales con los cuales los diseñadores pueden trabajar en el desarrollo de las unidades de potencia. Sin embargo, las zonas grises en ediciones anteriores del reglamento han permitido a lo largo de los años que algunos equipos saquen ventaja con materiales novedosos. A continuación explicamos cada uno de los materiales permitidos y su aplicación dentro de la unidad de potencia.

Pistón de F1 de la era atmosférica – Pankl/Ferrari

El reglamento técnico permite el uso de los siguientes materiales:

Aleaciones de aluminio: Éstas pueden usarse en componentes fabricados a partir de procesos de fundición o forja, como el caso de pistones, bloques de motor, culatas y cárter del motor. En pistones muchos fabricantes emplean Aleaciones de aluminio con berilio como aleante hasta un 0.25% del mismo, o también aleaciones menos exóticas como las empleadas en aviación (ej: 2618A). En bloques de motor y otros componentes estacionarios son comunes las aleaciones de la serie 300 (Al-Si-Cu or Al-Si-Mg).

Bloque de cilindros Ferrari F2001 – Catawiki

Aleaciones de Titanio: Estas pueden usarse en Bielas y elementos del turbo. Algunos fabricantes de motores o elementos de motores utilizan aleaciones similares al Titanio grado 6AL-4V (o TC4, como se le conoce en algunos lugares)

Conjunto pistón/biela de un F1 moderno – italiazakka.co.jp

 

Montaje de válvula de motor de F1 – Brian Garvey/ www.F1technical.net

Aleaciones basadas en hierro: La normativa exige que los pasadores de pistón, cigüeñal, engranes de las bombas, ejes de levas y otros elementos rotativos deben fabricarse en aceros (aleación de hierro y carbono inferior al 2% con otros elementos como aluminio, cobalto, zinc, etc.).

Cigüeñal Ferrari F2003GA – Ferrari

Fuera de estos materiales principales, hay otra serie de aleaciones metálicas y materiales no metálicos que pueden usarse bajo serias restricciones.

Las aleaciones basadas en tungsteno sólo pueden emplearse en los contrapesos del cigüenal siempre y cuando su densidad no supere los 18400kg/m3.

Contrapesos de tungsteno en cigüeñal de F1 – Ferrari

Para el caso del magnesio, sólo componentes menores que no estén sujetos a movimiento (carcasas de bombas, tapas y similares) y sólo podrán usarse aleaciones cubiertas por las normas ISO16220 e ISO3116.

Otros materiales, como cerámicas pueden emplearse en rodamientos únicamente, mientras que los materiales compuestos como la fibra de carbono sólo podrán usarse en elementos menores como tapas, y los compuestos de matriz metálica (metales reforzados con fibras) están terminantemente prohibidos bajo la normativa actual.

Continue Reading

Técnica

Los motores con turbo eléctrico de Audi

El Audi SQ7 lleva un motor diesel V8 de 4 litros “biturbo”, y los alemanes se han sacado un truco de la manga para eliminar el lag de este motor con un tercer turbo que funciona gracias a un motor eléctrico.

Published

on

Los motores llevan años usando turbos, que aprovechan los gases del escape del motor para hacer funcionar una turbina, que comprime el aire que entra en el motor y da un empujón a la combustión, aumentando la potencia. El problema de esto es que, debido a que a bajas velocidades el volumen de gases es demasiado bajo, al pisar el acelerador el turbo tarda un tiempo en ponerse en su régimen de rendimiento óptimo y entonces se experimenta lo que llamamos “lag” y no recibimos este aumento de potencia hasta pasado un tiempo.

Los fabricantes han desarrollado varias técnicas para intentar mitigar este efecto y ahora Audi ha inventado un sistema que lo elimina por completo. El primer turbo del motor del SQ7 no funcionará mediante los gases del escape, sino que el motor hará funcionar un generador de 3Kw, conectado a una batería de 48V, que a su vez opera un motor eléctrico de 7Kw encargado de hacer que gire la turbina del turbo.

Detalle del turbo eléctrico de Audi (Imagen: Audi)

 

Gracias a esto, cuando el conductor demande una entrega de potencia inmediata, en vez de tener que esperar a que el turbo se ponga a funcionar con los gases de la combustión, el motor eléctrico empujará el turbo a 70000rpm en menos de un cuarto de segundo para poder disfrutar de toda la potencia del sistema desde el primer momento.

Una vez el motor esté a pleno rendimiento y con los gases haciendo funcionar un segundo turbo convencional, un sistema de válvulas redirige el flujo de aire a este segundo turbo, desconectando el primero.

Pero además, han programado el sistema de válvulas de escape para que a bajas rpm, los escapes sólo salgan por una de las dos válvulas en cada cilindro y a altas rpm se active una segunda válvula que envía los gases a un segundo turbo.

Esquema del sistema de turbo eléctrico (Imagen: Audi)

Es decir, al arrancar el coche el turbo eléctrico da potencia extra instantáneamente al motor, cuando subimos un poco de revoluciones y el primer turbo convencional ya está funcionando, el eléctrico se desconecta y si a altas revoluciones seguimos demandando la máxima potencia, las válvulas redirigen los gases a un tercer turbo.

Ahora podríamos pensar que, en teoría, deberíamos ser capaces de instalar este tipo de turbo a cualquier coche. Se compra un turbo con motor eléctrico, se conecta a la batería de 12V del coche y ya tendríamos un extra de potencia sin sufrir lag en la aceleración ¿No?

El complejo sistema eléctrico que hace funcionar el turbo de Audi (Imagen: Audi)

Bueno, no es tan fácil, en internet podemos encontrar estos kits pero la verdad es que no hacen absolutamente nada ya que estos turbos no tienen la fuerza suficiente. Por eso Audi se ha tomado la molestia de implementar el generador y la batería que comentaba anteriormente. Es un sistema tremendamente complejo por lo que no es algo que se pueda instalar en cualquier motor como sí que se podría hacer con un turbo convencional, sin entrar en lo tremendamente caro que resultaría.

Continue Reading

Twitter

MomentoGP's Twitter avatar
MomentoGP
@MomentoGP

📊 #F1 #PortugueseGP 🇵🇹 🔨 Mercedes sigue con el martillo en Portimao 🐂 Red Bul parecen los únicos que pueden unirs… t.co/enz4aWOpOa

MomentoGP's Twitter avatar
MomentoGP
@MomentoGP

📊 #F1 #PortugueseGP 🇵🇹 💻 Viernes de mucho analizar 🇪🇸 Viernes productivo para Carlos Sainz donde dio 73 vueltas a… t.co/AHKnflBDvd

MomentoGP's Twitter avatar
MomentoGP
@MomentoGP

📊 #F1 #PortugueseGP 🇵🇹 🆚 Verstappen y Stroll se complican los libres 2 en un accidente 🔝 Bottas lidera con un Nor… t.co/zAvnHlZ6eM

MomentoGP's Twitter avatar
MomentoGP
@MomentoGP

📊 #F1 #PortugueseGP 🇵🇹 ✅ Verstappen se libra de sanción contra Stroll 🆚 El incidente se salda sin sanción para ni… t.co/d8dQMMlOTU

MomentoGP's Twitter avatar
MomentoGP
@MomentoGP

📊 #F1 #PortugueseGP 💬 Sergio Pérez: "Todavía no tengo nada firmado" 😱 El futuro del piloto mexicano se decidirá mu… t.co/jnGZEVtDW6

Facebook

Meta

Populares

Copyright © 2017-2020 MomentoGP.
Este sitio web no es oficial y no está asociado en ningún modo con el grupo de compañías de la Fórmula 1. F1, FORMULA ONE, FORMULA 1, FIA FORMULA ONE WORLD CHAMPIONSHIP, GRAND PRIX y marcas relacionadas son marcas registradas de Formula One Licensing B.V.